An Optimal Load Disaggregation Method Based on Power Consumption Pattern for Low Sampling Data
نویسندگان
چکیده
منابع مشابه
Power Disaggregation for Low-sampling Rate Data
In this paper, we focus on energy disaggregation at low-sampling rates (at 6sec and 1min) and use only active power measurements for training and testing. Specifically, we develop two algorithms: one is a low-complexity, supervised approach based on Decision Trees and another is an unsupervised method based on Dynamic Time Warping. Both proposed algorithms share common pre-classification steps....
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولLoad Profile Disaggregation Method for Home Appliances Using Active Power Consumption
Power metering and monitoring system is a basic element of Smart Grid technology. This paper proposes a new Non-Intrusive Load Monitoring (NILM) method for a residential building sector using the measured total active power consumption. Home electrical appliances are classified by ON/OFF state models, Multi-state models, and Composite models according to their operational characteristics observ...
متن کاملComplexity of Power Draws for Load Disaggregation
Non-Intrusive Load Monitoring (NILM) is a technology offering methods to identify appliances in homes based on their consumption characteristics and the total household demand. Recently, many different novel NILM approaches were introduced, tested on real-world data and evaluated with a common evaluation metric. However, the fair comparison between different NILM approaches even with the usage ...
متن کاملDetermination of Optimal Sampling Design for Spatial Data Analysis
Extended Abstract. Inferences for spatial data are affected substantially by the spatial configuration of the network of sites where measurements are taken. Consider the following standard data-model framework for spatial data. Suppose a continuous, spatially-varying quantity, Z, is to be observed at a predetermined number, n, of points ....[ To Countinue Click here]
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2019
ISSN: 2071-1050
DOI: 10.3390/su11010251